Multilevel Preconditioners for Mixed Methods for Second Order Elliptic Problems

نویسندگان

  • Zhangxin Chen
  • Richard E. Ewing
  • Raytcho D. Lazarov
  • Serguei Maliassov
  • Yuri A. Kuznetsov
چکیده

A new approach of constructing algebraic multilevel preconditioners for mixed nite element methods for second order elliptic problems with tensor coe cients on general geometry is proposed The linear system arising from the mixed methods is rst algebraically condensed to a symmetric positive de nite system for Lagrange multipliers which corresponds to a linear system generated by standard nonconforming nite element methods Algebraic multilevel preconditioners are then constructed for this system based on a triangulation of parallelepipeds into tetrahedral substructures Explicit estimates of condition numbers and simple computational schemes are es tablished for the constructed preconditioners Finally numerical results for the mixed nite element methods are presented to illustrate the present theory

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substructuring Preconditioning for Finite Element Approximations of Second Order Elliptic Problems. Ii. Mixed Method for an Elliptic Operator with Scalar Tensor

Abstract This work continues the series of papers in which new approach of constructing alge braic multilevel preconditioners for mixed nite element methods for second order elliptic problems with tensor coe cients on general grid is proposed The linear system arising from the mixed meth ods is rst algebraically condensed to a symmetric positive de nite system for Lagrange multipliers which cor...

متن کامل

Multilevel Filtering Preconditioners: Extensions to More General Elliptic Problems

The concept of multilevel filtering (MF) preconditioning applied to second-order selfadjoint elliptic problems is briefly reviewed. It is then shown how to effectively apply this concept to other elliptic problems such as the second-order anisotropic problem, biharmonic equation, equations on locally refined grids and interface operators arising from domain decomposition methods. Numerical resu...

متن کامل

Substructure Preconditioners for Elliptic Saddle Point Problems

Domain decomposition preconditioners for the linear systems arising from mixed finite element discretizations of second-order elliptic boundary value problems are proposed. The preconditioners are based on subproblems with either Neumann or Dirichlet boundary conditions on the interior boundary. The preconditioned systems have the same structure as the nonpreconditioned systems. In particular, ...

متن کامل

PRECONDITIONING OF DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS A Dissertation by VESELIN

Preconditioning of Discontinuous Galerkin Methods for Second Order Elliptic Problems. (December 2007) Veselin Asenov Dobrev, B.S., Sofia University Chair of Advisory Committee: Dr. Raytcho Lazarov We consider algorithms for preconditioning of two discontinuous Galerkin (DG) methods for second order elliptic problems, namely the symmetric interior penalty (SIPG) method and the method of Baumann ...

متن کامل

Multilevel Approaches to Nonconforming Finite Element Discretizations of Linear Second Order Elliptic Boundary Value Problems

We consider adaptive multilevel techniques for nonconforming nite element dis-cretizations of second order elliptic boundary value problems. In particular, we will focus on two basic ingredients of an eecient adaptive algorithm. The rst one is the iterative solution of the arising linear system by preconditioned conjugate gradient methods and the second one is an a posteriori error estimator fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1996